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In the present paper, we study reflection of inclined incident plane waves from a free
boundary of the half-space in which the material is described by constitutive equations
valid for elastic solids with voids. Both the cases of the transverse and longitudinal incident
waves are considered, and it is shown that only the transverse one can propagate in the
solid without attenuation, after having been reflected from the free boundary surface. The
reflection coefficient and the amplitude of the surface oscillations are expressed in explicit
form. The general results are demonstrated for several hypothetical porous materials, and it
is shown that the reflection coefficient and the vibration amplitude are typically less than in
classical media without voids. However, for relatively large transverse wave speed and high
porosity, free boundary oscillation can exceed the classical one.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Investigation of dynamic properties of various elastic solids is a very important problem in
the practice of ultrasonic inspection of materials, vibrations of engineering structures, in
seismology and many other fields. Usually, such materials can be adequately described by
classical dynamic equations of linear isotropic elastic solids [1]. However, some materials
of a more complex microstructure (composite materials, granular materials, soils, etc.)
show specific characteristic response to an applied dynamic load.

There are a number of theories which describe mechanical properties of porous
materials, and the most known of them is a Biot consolidation theory of fluid-saturated
porous solids [2, 3]. Typically, these theories reduce to classical elasticity when the pore
fluid is absent. This is why Cowin and Nunziato proposed a new theory to more
adequately describe the dynamic nature of homogeneous elastic materials with voids free
of fluid [4]. A general theory of such materials has been currently well developed by many
authors (see, for example, references [5, 6, 7]), but only a few concrete problems have been
solved, which does not permit real estimates of practical merits of this model.

Generally, this theory is founded on the balance of energy, when assuming that presence
of the pores involves an additional degree of freedom, namely, the fraction of elementary
volume. As a consequence, the bulk mass density is given by the product of two fields, the
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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void volume fraction and the mass density of the matrix (elastic) material. Maybe, the
main disadvantage of the Cowin–Nunziato theory is that the physical parameters that
enter the governing equations of motion have never been measured, and the authors
usually operate with hypothetical sets of the parameters. However, it should be noted that
precise measurement of physical constants is a great problem also in other theories (in fact,
even in classical linear elasticity elastic moduli can, as a rule, be measured with an error of
several per cent, which makes absurd results often obtained as a calculation with four to
five significant digits).

In the framework of the Cowin–Nunziato theory, Puri and Cowin [8] first investigated
all possible types of plane waves which can propagate in linear elastic materials with voids.
They discovered dispersion and dissipation (attenuation) of these waves with distance.
More recently Chandrasekharaiah [9] studied the influence of the voids’ volume fraction
on Rayleigh surface waves.

The main aim of the present work is to study reflection and mode conversion of plane
waves (both transverse and longitudinal), incident at the angle y on the free boundary
surface of the porous elastic half-space. We compare the results obtained with the case of
classical elastic materials, and give an estimate of the difference for the reflection angles
and the amplitude of the free surface vibrations. Similar problems have been investigated,
in frames of the consolidation theory, in references [10–12].

2. SURVEY OF PREVIOUS RESULTS

The theory of linear isotropic elastic materials with voids, in the case of harmonic
oscillations with the angular frequency O; involves the following equations of motion
[4, 8]:

mD %uu þ ðlþ mÞgrad div %uu þ b grad fþ r O2 %uu ¼ 0; ð1aÞ

aDf� xf� b div %uu þ ðioOþ rkO2Þf ¼ 0: ð1bÞ

Here %uu ¼ fu1; u2; u3g is the displacement vector; f ¼ n� n0 the change in the volume
fraction from the reference volume fraction; l and m the classical elastic moduli; r the
density of the material; and a; b; x; o; k the material coefficients related to porosity. All
physical quantities contain the time-dependent factor expð�iOtÞ; which is omitted later on.
It is obvious that in the case b ¼ 0 the elastic displacement field %uu and the ‘‘porosity’’ f can
be separately determined from equations (1a) and (1b) respectively.

As soon as the functions %uu and f are defined, the components of the stress tensor are
given by the constitutive equations as follows (dij is Kronecker’s delta),

sij ¼ ldijekk þ 2meij þ bfdij; eij ¼ 1
2
ðui;j þ uj;iÞ; ð1cÞ

with summation on the repeating index.
The boundary conditions at the free surface of the half-space y � 0 are (see Figure 1)

syy ¼ sxy ¼ syz ¼ @f=@y ¼ 0; y ¼ 0: ð2Þ

Let ðx; yÞ be the vertical plane and the axis z be orthogonal (i.e., horizontally directed)
to the plane. Then the simplest solution of the system (1)

%uu ¼ f0; 0;wðx; yÞg; f ¼ 0; ð3Þ

reduces equations (1) to the Helmholtz equation

Dw þ k2
s w ¼ 0; ks ¼ O=cs > 0; c2s ¼ m=r: ð4Þ



Figure 1. Incidence of the plane vertically polarized transverse wave onto the free boundary of the porous
elastic half-space.
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So-called plane waves of horizontal polarization

wðx; yÞ ¼ eiksðx sin gþy cos gÞ ð5Þ

are natural solutions of equation (4) with arbitrary (real-valued) angle of propagation g:
Thus, plane waves of horizontal polarization (1) do not decay with distance, (2) are non-
dispersive, and (3) propagate with the classical transverse (‘‘shear’’) wave speed cs:

In the case of vertical polarization,

%uu ¼ fuxðx; yÞ; uyðx; yÞ; 0g; f ¼ fðx; yÞ; ð6Þ

Chandrasekharaiah [9] has shown that equations (1) are automatically satisfied if the
classical wave potentials p and q;

ux ¼ @p

@x
� @q

@y
; uy ¼ @p

@y
þ @q

@x
; ð7Þ

satisfy the following equations:

Dq þ k2
s q ¼ 0; ð8Þ

ðDþ k2
pÞ D� 1

l22
þ io

a
Oþ rk

a
O2

� �
þ H

l21
D

� �
p ¼ 0; ð9Þ

where

kp ¼ O
cp

; c2p ¼ lþ 2m
r

; H ¼ b
lþ 2m

; l21 ¼ a
b
; l22 ¼ a

x
; ð10Þ

and cp is the well-known longitudinal (‘‘pressure’’) wave speed. For all this, the function f
is determined from the equation

�Hf ¼ Dp þ k2
pp: ð11Þ

Equation (8) coincides with equation (4). Therefore, a non-dispersive transverse wave of
vertical polarization can propagate without attenuation along arbitrary directions in the
plane ðx; yÞ: It is a very interesting and important feature of the wave process in porous
elastic media that the plane transverse wave (both of horizontal and vertical polarization),
being non-dispersive, propagates in the medium without any decay.

Solution of equation (9) for longitudinal potential pðx; yÞ is of a more complex form,
and this will be discussed in detail in the next section.



M. CIARLETTA AND M. A. SUMBATYAN256
3. REFLECTION OF THE TRANSVERSE PLANE WAVE FROM THE FREE BOUNDARY

So far as the case of the transverse wave of horizontal polarization involves only single
equation (4), its reflection from a free boundary, under an arbitrary angle of incidence y; is
described absolutely in the same way as in classical linear elasticity [13]. In particular, the
reflection angle g is equal to the angle of incidence: g ¼ y and there is no mode conversion
of the incident transverse wave to the longitudinal one.

Now we pass to the shear wave of vertical polarization. Let the incident plane wave

qinc ¼ eiksðx sin y�y cos yÞ; pinc ¼ 0; ð12Þ

fall onto the free boundary y ¼ 0 of the porous elastic half-space, with the angle of
incidence y (see Figure 1).

Since the shear component of the wave field is subjected to the same reflection law as in
a classical medium, the total transverse potential q can be represented as

q ¼ eiksðx sin y�y cos yÞ þ Rqe
iksðx sin yþy cos yÞ; ð13Þ

where Rq is the reflection coefficient. One may seek the longitudinal potential p in the form

p ¼ T eiwðx sin gþy cos gÞ; ð14Þ

where both the coefficient T and the angle g should be defined from the boundary
conditions. By substituting representation (14) into equation (9), one comes to the
equation which predetermines the unknown value of the wave number w;

ðk2
p � w2Þð�l22w

2 � 1þ ionkp þ k *2k2
pÞ � Nw2 ¼ 0; ð15Þ

where 05N ¼ ðl22=l21ÞH51 is a dimensionless parameter [4, 8], and the coefficients l2;
on ¼ ol22cp=a and kn ¼ l2 cp

ffiffiffiffiffiffiffiffiffiffiffi
rk=a

p
are all of length dimension.

Equation (15) is a biquadratic equation with respect to the wave number w: Obviously,
only in the case N ¼ 0 ) b ¼ 0 (separate elastic and porosity wave fields) this admits the
solution w ¼ kp corresponding to propagation of classical longitudinal wave with the wave
speed cp: Generally, equation (15) is equivalent to

l22w
4 þ w2½1� N � ionkp � ðl22 þ k *2Þk2

p� � k2
pð1� ionkp � k * 2k2

pÞ ¼ 0: ð16Þ

Equation (16) has been studied in detail by Puri and Cowin [8], for various ranges of
physical parameters. Generally, solution of equation (16) is complex-valued; however, this
admits real-valued solutions for the cases of limitly low and limitly high frequencies. In the
first case, when l2kpc1 ð) onkp; knkpc1Þ; equation (16) is equivalent to (we must keep
main asymptotic terms both in real and imaginary parts)

l22w
4 � ½ðl22 þ k *2Þk2

p þ ionkp�w2 þ ðk * 2k2
p þ ionkpÞk2

p ¼ 0; ð17Þ

whose two solutions are real-valued (of course, we use only principal value Reð
ffiffiffi
x

p
Þ � 0;

when applying root squares),

w1 ¼ kp ¼ O
cp

; w2 ¼ k3 ¼
O
c3

þ ion

2l2kn
¼ O

c3
þ io c3

2a
; c3 ¼

l2 cp

kn
¼

ffiffiffiffiffiffi
a
rk

r
; ð18Þ

in accordance with notations [8] related to the wave phase speed c3:
Unfortunately, high-frequency oscillations are of less importance in real practice. In

fact, l2 kp ¼ 2pl2=lp; where lp is the length of the longitudinal wave. Since the parameter
l2; with dimension of length, is coupled with the microstructure of the medium, this seems
to be rather small when compared with the wavelength lp; so l2 kp is apparently a small
dimensionless parameter. Only in acoustic microscopy, when the length of the ultrasonic
wave is of the order of particles’ size, this parameter can be of the order of 1.
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In the more realistic low-frequency case l2 kp{1 (that is well known to correspond to
real situation in seismic wave propagations) the asymptotic solution of equation (16) is [8]

w1 ¼
kpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p ¼ O

cp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p ; ð19aÞ

w2 ¼
on kp

2l2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p

l2
¼ O

c4
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p

l2
; c4 ¼

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p

ol2
; ð19bÞ

where the wave phase speed c4 is introduced in reference [8].
Some important conclusions may be extracted from equations (18) and (19): (1) high-

frequency propagation in the porous medium admits a classical longitudinal wave speed cp

(for g ¼ g1); (2) the undamped low-frequency longitudinal wave with g ¼ g1 possesses a
wave speed cp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
which is different from cp; (3) the second reflected wave (with g ¼ g2)

always decays with distance, both for high and low frequencies; but more wonderful is that
at O ! 0 and O ! 1 the respective attenuation coefficients oc3=2a and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
=l2 do not

vanish, and moreover these do not depend on the frequency O at all. Since l2 is a small
parameter with a dimension of length the attenuation coefficient in the low-frequency caseffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
=l2 is considerably large, so this longitudinal wave, after having been reflected

from the boundary, decays almost suddenly. However, this wave ‘‘participates’’ when
satisfying boundary conditions, with the same degree-like waves with the wave number ks

(both incident and reflected ones) and the first reflected longitudinal wave with w ¼ w1:
It should be noted that Puri and Cowin [8] have proved that the wave number w1

represents predominantly an elastic wave and w2 represents a predominantly volume
fraction wave.

Generally, the total structure of the wave field in the half-space y > 0 can be expressed
in the following way:

q ¼ eiksðx sin y�y cos yÞ þ Rq e
iksðx sin yþy cos yÞ; ð20aÞ

p ¼ T1 e
iw1ðx sin g1þy cos g1Þ þ T2 e

iw2ðx sin g2þy cos g2Þ: ð20bÞ

As usually, Snell’s law implies

w1 sin g1 ¼ w2 sin g2 ¼ ks sin y; ð21Þ

which determines (generally, complex-valued) reflection angles g1 and g2: The only three
remaining unknown coefficients Rq;T1;T2 should be defined by satisfying the null
boundary conditions (2) for the components sxy; syy; @f=@y along the boundary line
y ¼ 0:

As follows from equations (1c) and (11) these boundary conditions, in terms of wave
potentials p and q; are

sxy ¼ 0 ) 2
@2p

@x@y
þ @2q

@x2
� @2q

@y2
¼ 0; y ¼ 0; ð22aÞ

syy ¼ r c2pDp � 2c2s
@2p

@x2
� @2q

@x@y

� �� �
� b

H
ðDp þ k2

p pÞ ¼ 0

) 2
@2p

@x2
� @2q

@x@y

� �
þ k2

s p ¼ 0; y ¼ 0; ð22bÞ

@f
@y

¼ 0 ) @

@y
ðD p þ k2

p pÞ ¼ 0; y ¼ 0: ð22cÞ
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By using representations (20) for potentials one can reduce equations (22) to the following
3� 3 system of linear algebraic equations with respect to the coefficients T1;T2;Rq:

T1w21 sin ð2g1Þ þ T2w22 sin ð2g2Þ � Rqk2
s cos ð2yÞ ¼ k2

s cos ð2yÞ; ð23aÞ

T1 cos ð2yÞ þ T2 cos ð2yÞ þ Rq sin ð2yÞ ¼ sin ð2yÞ; ð23bÞ

T1w1 cos g1 ðk2
p � w21Þ þ T2w2 cos g2 ðk2

p � w22Þ ¼ 0: ð23cÞ

It is very interesting that the constants N; l2;on; kn characterizing the presence of voids are
not explicitly present in the last system (23). In fact, these coefficients are included only in
the wave numbers w1; w2 and respective angles g1; g2:

4. PHYSICAL CONCLUSIONS FOR THE CASE OF TRANSVERSE INCIDENT WAVE

To begin with, let us prove that for any (finite) fixed frequency both the reflected
longitudinal waves (with the wave numbers w1 and w2 respectively) are damped, and so
decay when y ! þ1: We give the proof by contradiction. If any w2; as a solution of
equation (16), is positive, then by separating real and imaginary parts in expression (16),
we can see that w2 ¼ k2

p (by setting the imaginary part to be equal to zero). But in the form
(15), equivalent to (16), it becomes clear that w2 ¼ k2

p cannot be the exact solution of (16).
Therefore, strictly speaking the exact value of w2 (and w as well) is complex valued for any
finite O (i.e., ImðwÞ=0). Then, due to Snell’s law w sin g ¼ ks sin y and the quantity

w cos g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � k2

s sin
2y

p
is always complex valued, so both the exponential terms in

equation (20b) decay with the ordinate y increasing.
Thus, we come to the conclusion that only asymptotically for high and low frequencies,

when the imaginary part of w tends to zero, equation (16) admits real solutions w ¼ w1: The
second solution w ¼ w2 always remains complex valued.

In both the asymptotic cases, the main physical parameter, the reflection coefficient Rq;
can be expressed in explicit form. For high frequencies w ¼ kp and equation (23) becomes
equivalent to the system

T1w21 sin ð2g1Þ þ T2w22 sin ð2g2Þ � Rqk2
s cos ð2yÞ ¼ k2

s cos ð2yÞ; ð24aÞ

T1 cos ð2yÞ þ T2 cos ð2yÞ þ Rq sin ð2yÞ ¼ sin ð2yÞ; ð24bÞ

T2w2 cos g2 ðk2
p � w22Þ ¼ 0; ð24cÞ

which determines Rq to be independent of the pair w2; g2 (recall that w1 sin g1 ¼ ks sin y):

Rq ¼ w1 cos g1 tg
2ð2yÞ � ks cos y

w1 cos g1 tg2ð2yÞ þ ks cos y
; tg ¼ tangent; ð25Þ

with

w1 cos g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w21 � ðw21 sin g1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
s sin

2y
q

; ð26Þ

a solution which coincides with the classical case of a medium without voids [13], that in
view of w1 ¼ kp does not seem to be unexpected.

What is unexpected is just that the term T1w1 cos g1ðk2
p � w21Þ in the system (23) always

remains very small, (this implies T2 to be very small too). We have performed numerous
calculations, for various values of physical parameters (a FORTRAN code was used for
this aim, which permits direct operation with complex-valued numbers), and the
transformation coefficient T2 never exceeded 0�02: Apparently, this is genetically based
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on the fact that the difference k2
p � w21 is always small. Really, for high frequencies w1 � kp;

for low frequencies w1 � kp=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
which is very close to kp (it is proved in reference [14]

that 05N54c2s=3c2p). Numerical analysis shows that k2
p � w21 is relatively small for all O: If

so, then for arbitrary O the system (24) is a good approximation for the system (23). This
implies the representation (25) to be (approximately) uniformly valid, with corresponding
w1 taken as an exact principal (predominantly elastic-wave-coupled) solution of equation
(16), with respective value g1: To make a choice between two complex-valued quantities w1
and w2; which of them is indeed a predominantly elastic (i.e., principal) one, when solving
equation (16), we accepted as g1 the value with jw1 � kpj5jw2 � kpj: Such an algorithm
results in g1 always correctly. For all that relative error of approximation (25), when
compared with the exact solution of the system (23), does not exceed 3%; and for the most
part of physical parameters combinations it is less than 1%:

Obviously, approximation (25) yields an explicit formula for the low-frequency limit.
Really, in this case w1 ¼ kp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
; so one can apply formula (25) for low frequencies by

putting

w1 cos g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p

1� N
� k2

s sin
2y

s
: ð27Þ

It should be noted that both the high- and low-frequency reflection coefficients (25) with
equations (26) and (27), respectively, do not depend on the frequency O: Among all
physical parameters these depend only on the ratio cp=cs; the parameter N and, of course,
upon the incident angle y:

Figures 2–5 demonstrate behaviour of the reflection coefficient Rq versus frequency, for
the four different hypothetical elastic materials with voids, considered by Puri and Cowin
[8]. The following values are common for these materials: cp ¼ 3873 m=s; cs ¼
1937 m=s; x ¼ 12 GPa; b ¼ 10 GPa; H ¼ 1=3: All over these figures line 1 is related to
the case y ¼ 108; line 2 to y ¼ 208; line 3 to y ¼ 258; line 4 to y ¼ 308; line 5 to y ¼ 358; line
6 to y ¼ 408:

We compare in these figures the results of direct numerical treatment (or, equivalently,
results predicted by formula (25) with exact w1 and g1) with explicit asymptotic formulas.
All horizontal straight lines represent classical solutions [13] for respective angle of
incidence, which in accordance with the above-stated results coincide also with the high-
frequency approximation. It can be seen from Figures 2–5 that all curves, after some
Figure 2. Reflection coefficient versus frequency for the first hypothetical porous material:
c3 ¼ 5000 m=s; c4 ¼ 16 653 m=s; o ¼ 1 MPa s; a ¼ 8 GPa m2:



Figure 3. Reflection coefficient versus frequency for the second hypothetical porous material:
c3 ¼ 2000 m=s; c4 ¼ 1665 m=s; o ¼ 10 MPa s; a ¼ 8 GPa m2:

Figure 4. Reflection coefficient versus frequency for the third hypothetical porous material:
c3 ¼ 5000 m=s; c4 ¼ 1862 m=s; o ¼ 1 MPa s; a ¼ 0�1 GPa m2:

Figure 5. Reflection coefficient versus frequency for the fourth hypothetical porous material:
c3 ¼ 2000 m=s; c4 ¼ 3725 m=s; o ¼ 10 MPa s; a ¼ 40 GPa m2:
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oscillations, approach at high frequencies their own respective asymptotic horizontal line.
For small frequencies, it is also clearly seen that at the left end of the frequency O
variation, every curve again approaches its low-frequency asymptotic limit independent of
the value of O:
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From the graphics we can discover an interesting wave property of the porous media:
despite the small difference between high-frequency w1 ¼ kp and low-frequency w1 ¼
kp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
wave numbers, the respective values of Rq can differ considerably (see, for

example, lines 4 and 5). The real reason of this feature is that corresponding values of

w1 cos g1; being equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
s sin

2y
q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p=ð1� NÞ � k2
s sin

2y
q

; respectively, for
some values of y are indeed far from each other. The range of y; where such a behaviour
takes place, depends of course on the ratio cp=cs and the value of N:

In the context of Figures 2–5 one can evidently notice that, as follows from system (25),
for the case of normal incidence ðy ¼ 0Þ Rq ¼ �1 ) jRqj ¼ 1; like in a classical elastic
medium [13]. It should also be noted that when the angle of incidence is greater than
some critical value, the reflection coefficient jRqj ¼ 1 again, in agreement with classical
theory [13].

5. FREE SURFACE OSCILLATIONS

Let us develop formulas for components of the vector of free boundary surface
oscillations. It follows from equations (7) and (20) that

Ux ¼ uxjy¼0 ¼ i ks e
iks x sin y½ðT1 þ T2Þ sin yþ ð1� RqÞ cos y�: ð28Þ

Since equation (23b) implies T1 þ T2 ¼ ð1� RqÞtgð2yÞ; so equation (28), with the use of
equation (25), gives

jUxj ¼ ks

cos y
cos ð2yÞ j1� Rqj ¼ ks

2ks cos
2y=cos ð2yÞ

jw1 cos g1 tg2ð2yÞ þ ks cos yj
: ð29Þ

Further,

Uy ¼ uyjy¼0 ¼ ieiksx sin y½T1w1 cos g1 þ T2w2 cos g2 þ ð1þ RqÞks sin y�: ð30Þ

One can obtain from equation (23a) that T1w1 cos g1 þ T2w2 cos g2 ¼
ð1þ RqÞks cos ð2yÞ=2 sin y; hence equation (30) leads to

jUyj ¼ ks

cos ð2yÞ
2 sin y

þ sin y
� �

j1� Rqj ¼ ks

jw1 cos g1j tg2ð2yÞ=sin y
jw1 cos g1 tg2ð2yÞ þ ks cos yj

: ð31Þ

General analysis of these expressions (29) and (31), on the basis of their analytical
representations, is rather complicated. However, for the most importance in the seismic
practice low-frequency case these permit estimates in explicit form. For small O we have
w1 ¼ kp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p
; so for y less than the first critical angle w1 cos g1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
p=ð1� NÞ � k2

s sin
2y

q
> kp cos y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
s sin

2y
q

; where the latter expression on the

right-hand side corresponds to classical theory of elastic materials without voids.
Therefore, it is clearly seen from equation (29) that jUxj5jUxjclassical : To make an
estimate for jUyj; we need to consider the behaviour of the function f ðzÞ ¼ z=ðzþ aÞ;
with z ¼ w1 cos g1 > 0 and a ¼ ks cos y > 0: Obviously, f 0ðzÞ ¼ a=ðzþ aÞ2 > 0; hence
jUyj is a monotonically increasing function of w1 cos g1 and consequently
jUyj > jUyjclassical :

Thus, the horizontal component of the oscillation vector is less than in the classical case,
but the vertical component is larger. What can be said regarding the modulus of this
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vector, i.e., what is larger: jUxj2 þ jUyj2 or the analogous quantity in the classical case? To
answer this question, let us rewrite jUxj and jUyj as follows:

jUxj ¼
ks

sin y tgð2yÞ
ks cos y

w1 cos g1 þ ks cos y=tg2ð2yÞ
¼ ks

sin y tgð2yÞ
A

zþ a
; ð32aÞ

jUyj ¼
ks

sin y tgð2yÞ
w1 cos g1 tgð2yÞ

w1 cos g1 þ ks cos y=tg2ð2yÞ
¼ ks

sin y tgð2yÞ
Bz

zþ a
; ð32bÞ

where

A ¼ ks cos y; B ¼ tgð2yÞ; a ¼ ks cos y
tg2ð2yÞ; z ¼ w1 cos g1: ð32cÞ

Obviously, the behaviour of the function jUxj2 þ jUyj2 is predetermined by the function

gðzÞ ¼ A2 þ B2 z2

ðzþ aÞ2
) g0ðzÞ ¼ 2

B2az2 � A2

ðzþ aÞ3
: ð33Þ

In our problem

B2az2 � A2 ¼ ks cos y ðw1 cos g1 � ks cos yÞ

¼ ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p

k2
s ð1� NÞ � sin2y

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2y

p2
4

3
5; ð34Þ

so the positive sign of the square brackets corresponds to a monotonically increasing
function gðzÞ (33). Otherwise, the function gðzÞ is monotonically decreasing.

For the four hypothetical elastic materials with voids considered above ðN ¼ 0�
2778; kp=ks ¼ cs=cp ¼ 1=2Þ we have ðk2

p=k2
s Þ=ð1� NÞ ¼ 0�3551; so g0ðzÞ50 and gðzÞ is a

monotonically decreasing function. Therefore, for all four materials,

jUxj2 þ jUyj25 jUxj2 þ jUyj2
� �

classical
: ð35Þ

Let us study this question in the general case. Since ðk2
p=k2

s Þ ¼ ð1� 2nÞ=ð2� 2nÞ (n is the
Poisson coefficient which is 05n50�5), one can see that ðk2

p=k2
s Þ51=2: It is also proved in

reference [14] that 05N5ð4=3Þ k2
p=k2

s52=3: The critical value of N; when the expression
in square brackets (34) changes its sign, is given as follows:

k2
p

k2
s ð1� NÞ ¼ 1 ) 1

2
5N ¼ 1�

k2
p

k2
s

51: ð36Þ

Therefore, for some materials with a relatively high ratio cs=cp and the ‘‘porosity index’’ N

being between 1=2 and 2=3; the function gðzÞ in equation (33) can be monotonically
increasing. In that case the amplitude of the free boundary surface full oscillation becomes
higher than for the case of materials when voids are absent.

6. LONGITUDINAL INCIDENT WAVE

This case is of less interest for real practice, because longitudinal wave generally cannot
propagate without attenuation, decaying with distance exponentially. This wave thus
cannot reach the free boundary when approaching from a far zone. Only in two
asymptotic cases of high and low frequencies can this wave fall onto the boundary without
visible damping.



PLANE WAVES REFLECTED BY A POROUS HALF-SPACE 263
For high frequencies, when g1 ¼ kp; the reflection process is subjected just to the same
reflection law as in the classical case [13]. Let us study in more detail the opposite low-
frequency regime.

Here, by analogy to equations (20), the wave potentials p and q can be represented as

p ¼ eiw1ðx sin g1�y cos g1Þ þ Rp e
iw1ðx sin g1þy cos g1Þ

þ R2 e
iw2ðx sin g2þy cos g2Þ; ð37aÞ

q ¼ Q eiksðx sin yþy cos yÞ; ð37bÞ

where g1 is the angle of incidence and Rp is the reflection coefficient.
Boundary conditions in the form (22) involve the following 3� 3 linear algebraic system

to define the three unknown constants Rp;R2;Q;

Rpw21 sin ð2g1Þ þ R2 w22 sin ð2g2Þ � Qk2
s cos ð2yÞ ¼ w21 sin ð2g1Þ; ð38aÞ

Rp cos ð2yÞ þ R2 cos ð2yÞ þ Q sin ð2yÞ ¼ �cos ð2yÞ; ð38bÞ

Rpw1 cos g1ðk2
p � w21Þ þ R2w2 cos g2ðk2

p � w22Þ ¼ 0; ð38cÞ

just with the same principal matrix as system (23). The solution of this system, when the
element a31 ¼ w1 cos g1ðk2

p � w21Þ is small, can be expressed as follows:

Rp ¼ w1 cos g1 tg
2ð2yÞ � ks cos y

w1 cos g1 tg2ð2yÞ þ ks cos y
; ð39Þ

which coincides with the reflection coefficient Rq for the case of the transverse incident
wave (see equation (25)), as in classical theory [13]: Rp ¼ Rq:

7. CONCLUSIONS

1. Reflection of oblique incident plane waves from a free boundary of a porous elastic
half-space has been considered, in the frames of the Cowin–Nunziato linear theory of
materials with voids. A uniform analytic representation (25) for the reflection
coefficient is developed, where the quantities w1; g1 are given as a solution of equation
(16). The relative error of this explicit representation is less than 2%.

2. Generally, wave reflection from the free boundary is frequency dependent. However, at
low and high frequencies, Rq does not depend on the frequency value; moreover, at the
high-frequency limit the quantity Rq approaches the respective value given by a classical
linear elastic theory.

3. As can be seen from Figures 2–5, ‘‘the rate of the approach’’ to respective limiting non-
dispersive (i.e., constant with respect to O) values strictly depends on the set of physical
parameters. Thus, for material represented in Figure 3, Rq remains frequency
dependent also for very low frequencies, and in Figure 4 for very high frequencies,
since over these ranges respective graphs for the function jRqðOÞj are not horizontal.

4. For both limiting cases when the amplitude of the free surface oscillations is less than in
a classical medium, that is strictly proved. Generally, this property is valid for an almost
arbitrary set of physical parameters, and only for exclusive combinations of parameters
can one expect inverse wave nature.
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